M2 ISTR - Vérification et Validation
Model Checking

Julien Brunel, ONERA
Julien.Brunel@onera.fr

1/37

Introduction
Formal semantics of systems

Formal property languages
Propositional logic
Linear time

Branching-Time

2/37

Introduction

Formal Methods

* Techniques based on mathematical methods to reason in a
rigourous way

* Used in the design and validation of critical systems (railways,
aeronautics, space, automotive)

* Costly (in terms of time and expertise) but errors and bugs are
even more!

* Allow to have guarantees by proof

3/37

Model checking

1. Building of a formal model of the system

2. Formal expression of the properties to check (derived from the
specification or from requirements)

3. Answer the question : Does the model of the system satisfy the

properties?
ol @l

AX ¢y A EX o

Model of the system Formalisation of the property

@ Model checking - N0 (counter-example)

Yes

4/37

Model checking

» Step 1 can be done by hand, or automatically.
The system can be a simple program, an hardware architecture,
or the abstraction of a more complex system, made of IT
components and non-IT components (hydraulics for instance).

» Step 2 must be done by hand, and may need some expertise on
the property language.

» Step 3 is in principle entirely automatic.

5/37

Advantages and drawbacks of model checking

Advantages
* can be used in early phases of development cycle
* automatic approach
* exhaustive exploration of the states of the system
* nice expressiveness (lots of properties can be expressed)
» efficiency according to the data structures
Limits
* needs formalisation
* expression of properties is non trivial
* finite number of states

* state explosion problem

6/37

Mitigate the state explosion problem

efficient data structures : Binary Decision Diagram (BDD)
* abstract the model to decrease the number of states

* partial order reduction: do not consider several times executions
that are equivalent for the satisfaction of the desired property

* induction : allows to represent in a finite way infinite structures

7/37

History of model checking

1977
1981
1980-1990
1990-2000

2000-...

2007

2010-...

Pnueli proposes to use temporal logic
Model checking of CTL par Clarke et al., Sifakis et al.
Many theoretical results

Huge performance improvements

Extensions : probabilities, real-time, infinite structures
MC adopted by main chip marker corporations (e.g. Intel)
Starting of software model checking (Microsoft)

ACM Paris Kanellakis Award 1998 et 2005

Turing Award to Clarke, Sifakis et Emerson

new SAT-based algorithms

8/37

* Check properties of electronic circuits (Intel, Motorola, IBM, etc.)
* Check the absence of bugs, or find bugs in software (software
model checking)
* on Scade programs
* on C code (BLAST from Berkeley, SLAM from Microsoft)
* on Java code (JavaPathFinder)
* on ByteCode, binary, ...
* Analyse the dependability of a system (AltaRica du
LaBri/Dassault)

* Check the correctness of distributed systems (TLA+ used for
instance by AWS)

9/37

Expression of the properties to check

Non temporal properties _
Property about the value of variables or the data structure

* The value of the integer variable x is greater thany.

* The array is sorted.

= out of the scope of model checking

Temporal Properties .
Temporal aspects can have various forms

* If a process requests to be executed, the OS will execute it
eventually.

* |tis always possible to go back to the initial state.
* FEach time a failure is detected, an alarm is launched.

* Each time an alarm is launched, a failure has been detected
earlier. 10/37

Formal semantics of systems

Transition system

Definition (Transition system (TS))
* aset S of states
* aset /| C S ofinitial states
* aset L of labels

e atransition relation - C Sx L x S

() (=)
—

Notation a
Sy — Sp — (s1,8,82) €—

a
Si — S = daeL.s; > s .

Transition system (symbolic definition)

 States can be defined by variables

* Transitions can be defined by variable updates

A (very) simple resource allocator

VAR

request : boolean;

state : {ready,busy};

INIT

state = ready

TRANS

if (state = ready & request)

then state’ = busy

else state’ = ready || state’ = busy

12/37

Terminology

We find different terms for very close concepts:

* Kripke models/structures in logic (model theory)

» State machine in software engineering
* Automata

* in language theory,
* or to model control structures at a higher level than TS (e.g., with
variables)
Main differences between variants
* Finite of infinite number of states
* Determinism

* Label on states and/or transitions

13/37

Why so many similar frameworks?

* Historical reason

History of automata
* 1940s : to model neurons...
* 1960s : languages, computability
* 1970s : systems models
* 1980s : model checking
* Different scientific communities

* Finite automata: simple formalism, limited expressiveness,
efficient algorithms

* Many results in various domains

* Many extensions : pushdown automata, automata with data

structures (integers, ...), timed automata, Petri Nets

14/37

Properties to check on a transition system

Categories of properties

Safety Something bad never happens

Liveness Something good will happen eventually

Accessibility A given state can be reached

Invariance If a given property is true before a transition, it is still
true after this transition

Fairness Transitions that are executable are executed eventually

15/37

Formal property languages

Need for a property language

We want to express formally these kinds of properties.

What properties for this system?

VAR
request : boolean;
state : {ready,busy};
INIT
state = ready
TRANS
if (state = ready & request)
then state’ = busy
else state’ = ready || state’ = busy

16/37

Propositional logic (syntax)

Definition (Syntax) -
Given a set P of atomic propositions, the language of propositional

logic is defined by :

* If p € Pthen pis a formula
* |f Aand B are formulas, then

* —Ais aformula, AA Bis a formula

17/37

Propositional logic (semantics)

Definition (Semantics)
A model, or valuation, for a formula A is a function

V : P — {true, false} which associates each atomic proposition with a
truth value (V is a line in the truth table).

ViR iff - V(p)
Ve -A iff VEA
V):A1/\A2 iff V‘:A1 andV):Az

Remark
Define Boolean connectives \V and = in terms of = and /.

18/37

Propositional logic (axiomatics)

Definition (Axiomatics)

Axioms
© A1 = (A2 = A1) Ax1
© (A1 = (A2 = A3)) = ((A1 = A2) = (A1 = A3)) Ax2

Inference rule

. %ﬁ'é\z (Modus Ponens)

19/37

Valid formulas and theorems

Valid formula
A formula A is valid (|= A) if it is true for every valuation :

A iff YV VEA

Theorem
A formula A is a theorem (- A) if it is an axiom or it is obtained by

applying inference rules to axioms..

Exercise »
Prove that A = Ais valid, and then prove that it is a theorem.

20/37

Valid formulas and theorems

Valid formula
A formula A is valid (|= A) if it is true for every valuation :

A iff YV VEA

Theorem
A formula A is a theorem (- A) if it is an axiom or it is obtained by

applying inference rules to axioms..

Exercise »
Prove that A = Ais valid, and then prove that it is a theorem.

Definition (Correctness and completeness)
* A deduction system is correct if every theorem is valid.

* Itis complete if every valid formula is a theorem.

20/37

Decision procedure

To know if a formula is valid (or satisfiable), there are different
methods.

* the simplest : truth table

* many algorithms have been developed recently with the aim of
efficiency

* method that will be useful for temporal logics : tableaux method
Goal : build a model of a formula, if there is one. It is important to
make sure the method is complete (if it does not produce a
model, then there does not exist any).

21/37

Expressiveness of propositional logic

Try to express in propositional logic:

* Function compute_position returns a correct result if
functions gps and measure_speed return correct results.

* At least two of these three functions return a correct result.

e FEach level 1 function returns a correct result if all the level 2
functions (on which it depends) return a correct result.

 After an incorrect result of function gps, function
compute_position returns a result that stays incorrect for
the whole system execution.

22/37

First order logic

Definition o
First order logic extends propositional logic with

* variables x1, X2, . ..
* quantifiers 9,V on variables
* functions on variables (succ if we reason on integers)

* predicates which replace propositions, and which apply to terms
(variables or function applications) (< for instance):

Vx.Vy.dz. < (x,z)= < (suce(y),z)

First order logic is more expressive than propositional logic but it is
undecidable.

23/37

Temporal logics

Temporal logics extend propositional logic to express dynamic
behaviours instead of static properties.

* p will be true eventually.
* p will always be true.
* pis always followed by q.

* there exists an execution that will satisfy p.

24/37

Linear Temporal Logic (LTL)

Definition (Syntax)])

Given a set P of atomic propositions, the syntax of LTL is defined by :
* If p € Pthen pis aformula
* If Aand B are formulas, then

* —Ais aformula, AA Bis a formula
e X Aisaformula, AU B is a formula

* X A: Awill be true in the next state
* Ay U A : Ay will remain true until Ao becomes true

Standard LTL connectives (to define in terms of the previous
operators)

* F A: Awill be true at some instant in the future

* G A: Awill always be true o

Linear Temporal Logic (LTL)

Definition (Semantics)
A model is an infinite sequence ¢ € S® of states (sp, s1,...) with a

valuation function V : S — 2F.

G,ilEp iff p € V(o))
G,iE=-A iff o,iFA
G,I.):A1/\A2 iff G,I.):A1 andG,i):Ag

26/37

Linear Temporal Logic (LTL)

Definition (Semantics)
A model is an infinite sequence ¢ € S® of states (sp, s1,...) with a

valuation function V : S — 2F.

G,ilEp iff p € V(oj)

G,iE=-A iff o,iFA

G,iEAINA iff G,iFAjand G,i = Ay

c,iEA UA iff 3> such that o,/ = Ay and

Vi"eN if i<i”"<i then o,/" A

26/37

Linear Temporal Logic (LTL)

Definition (Semantics)
A model is an infinite sequence ¢ € S® of states (sp, s1,...) with a

valuation function V : S — 2F.

c,iEp
G,iE=-A
o,il= A AA
o,il=A; U A

c,iEXA

iff
iff
iff
iff

p € V(o)

C,iFA

G,iFAjand G,i = Ay

3> such that o,/ = Ay and
Vi"eN if i<i”<i then o,i" E A

26/37

LTL standard connectives (solution)

FA £ (A)UA
GA € -F-A

27/37

Expressiveness of LTL

Try to express in LTL

* p will be true at least once.

* Each time p is true, g will be true later on
* p s true at most once

* pis true exactly twice

* p will only be true after q

* When p is true, there is an execution on which q will be true, and
an execution in which r will be true

28/37

Computation-Tree Logic (CTL)

Definition (Syntax)

Given a set P of atomic propositions, CTL syntax is defined as follows:
* If p e Pthen pis aformula
* If Aand B are formulas, then

e —Ais aformula, AA Bis a formula
* EX Ais aformula, E[AU B is a formula, A[A U B] is a formula

* EX A: there exists a successor state satisfying A

* E[A; U Ay] / A[A; U Ay] : there exists / all paths starting from the
current state (that) satisfy(ies) Ay U A

29/37

Other standard CTL connectives

To define in terms of the previous operators :

* AX A: all the successors of the current state satisfy A

* AG A : Awill always be true (in all the paths that start from the
current state)

- EGA, AFA, EFA

30/37

CTL

Definition (CTL model)
A CTL model is a Kripke structure (S, /,—, V), ol

* Sis a set of states
* | C Sthe set of initial states
e —C S x Sis the transition relation

» V:S — 2P is a function mapping each state to the set of atomic
propositions that are true in this state

31/37

CTL

Definition (Semantics)

sEp
SE-A
S}:A1/\A2
sEEXA

S): A[A1 U A2]

S): E[A1 U A2]

iff

iff

iff

iff

iff

iff

peV(s) where peP
SEA
s = A and S| Az

Js' € S suchthat s—s and s EA

Vo € Paths(s) Ji€ N such that
and VieN if 0<j<i then
do € Paths(s) Ji€ N such that
and VjieN if 0<j<i then

Gi = A
0j = As
G E A
o = A

32/37

CTL standard connectives (solution)

FA % (-AaUa
GA ¥ -F-A

AXA € —EX-A
EFA ¥ E[-AUA4|
AFA ¥ A[-AU A4
EGA £ -AF-A

AGA = -EF-A

33/37

Satisfaction by a Kripke structure (CTL)

Given M = (S, 1,—, V) a model and A a CTL formula,

MEA iff Vsel sEA

34/37

Satisfaction by a Kripke structure (LTL)

Satisfaction of an LTL formula by a model
Given M = (S, 1,—, V) a model and A an LTL formula,

MEA iff Vo ePaths(M), 6,0F=A

35/37

Theoretical results about LTL et CTL

Theorem
LTL and CTL are decidable. They both have correct and complete

axiomatic systems.

36/37

Expressiveness of LTL and CTL

Expressive power of two logics

Let Ly and L, be two logics having the same semantic models.

Ly < Ly (Lo is more expressive than L) if
for any Ay € Ly, there is Ax € L, s.t. the models satisfying Ay are the
same as the models satisfying As.

37/37

Expressiveness of LTL and CTL

Expressive power of two logics

Let Ly and L, be two logics having the same semantic models.

Ly < Ly (Lo is more expressive than L) if
for any Ay € Ly, there is Ax € L, s.t. the models satisfying Ay are the
same as the models satisfying As.

Expressive power of LTL and CTL
Do we have LTL < CTL or CTL < LTL ?

37/37

	Introduction
	Formal semantics of systems
	Formal property languages
	Propositional logic
	Linear time
	Branching-Time

