
M2 ISTR - Vérification et Validation

Model Checking

Julien Brunel, ONERA
Julien.Brunel@onera.fr

1/37

Plan

Introduction

Formal semantics of systems

Formal property languages

Propositional logic

Linear time

Branching-Time

2/37

Introduction

Formal Methods

• Techniques based on mathematical methods to reason in a

rigourous way

• Used in the design and validation of critical systems (railways,

aeronautics, space, automotive)

• Costly (in terms of time and expertise) but errors and bugs are

even more!

• Allow to have guarantees by proof

3/37

Model checking

1. Building of a formal model of the system

2. Formal expression of the properties to check (derived from the

specification or from requirements)

3. Answer the question : Does the model of the system satisfy the

properties?

3

1 2

AXφ1 ∧ EXφ2

Yes

No (counter-example)

System Property

Model of the system Formalisation of the property

Model checking

4/37

Model checking

• Step 1 can be done by hand, or automatically.

The system can be a simple program, an hardware architecture,

or the abstraction of a more complex system, made of IT

components and non-IT components (hydraulics for instance).

• Step 2 must be done by hand, and may need some expertise on

the property language.

• Step 3 is in principle entirely automatic.

5/37

Advantages and drawbacks of model checking

Advantages

• can be used in early phases of development cycle

• automatic approach

• exhaustive exploration of the states of the system

• nice expressiveness (lots of properties can be expressed)

• efficiency according to the data structures

Limits

• needs formalisation

• expression of properties is non trivial

• finite number of states

• state explosion problem

6/37

Mitigate the state explosion problem

• efficient data structures : Binary Decision Diagram (BDD)

• abstract the model to decrease the number of states

• partial order reduction: do not consider several times executions

that are equivalent for the satisfaction of the desired property

• induction : allows to represent in a finite way infinite structures

• . . .

7/37

History of model checking

1977 Pnueli proposes to use temporal logic

1981 Model checking of CTL par Clarke et al., Sifakis et al.

1980-1990 Many theoretical results

1990-2000 Huge performance improvements

Extensions : probabilities, real-time, infinite structures

2000-... MC adopted by main chip marker corporations (e.g. Intel)

Starting of software model checking (Microsoft)

ACM Paris Kanellakis Award 1998 et 2005

2007 Turing Award to Clarke, Sifakis et Emerson

2010-... new SAT-based algorithms

8/37

In practice

• Check properties of electronic circuits (Intel, Motorola, IBM, etc.)

• Check the absence of bugs, or find bugs in software (software
model checking)

• on Scade programs
• on C code (BLAST from Berkeley, SLAM from Microsoft)
• on Java code (JavaPathFinder)
• on ByteCode, binary, . . .

• Analyse the dependability of a system (AltaRica du

LaBri/Dassault)

• Check the correctness of distributed systems (TLA+ used for

instance by AWS)

9/37

Expression of the properties to check

Non temporal properties
Property about the value of variables or the data structure

• The value of the integer variable x is greater than y.

• The array is sorted.

⇒ out of the scope of model checking

Temporal Properties
Temporal aspects can have various forms

• If a process requests to be executed, the OS will execute it

eventually.

• It is always possible to go back to the initial state.

• Each time a failure is detected, an alarm is launched.

• Each time an alarm is launched, a failure has been detected

earlier. 10/37

Formal semantics of systems

Transition system

Definition (Transition system (TS))

• a set S of states

• a set I ⊆ S of initial states

• a set L of labels

• a transition relation →⊆ S×L×S

s1 s2

a2

a1

Notation
s1

a→ s2
def
= (s1,a,s2) ∈→

s1 → s2
def
= ∃a ∈ L.s1

a→ s2
11/37

Transition system (symbolic definition)

• States can be defined by variables

• Transitions can be defined by variable updates

A (very) simple resource allocator

VAR

request : boolean;

state : {ready,busy};

INIT
state = ready

TRANS

if (state = ready & request)

then state’ = busy

else state’ = ready || state’ = busy

12/37

Terminology

We find different terms for very close concepts:

• Kripke models/structures in logic (model theory)

• State machine in software engineering

• Automata

• in language theory,
• or to model control structures at a higher level than TS (e.g., with

variables)

Main differences between variants

• Finite of infinite number of states

• Determinism

• Label on states and/or transitions

13/37

Why so many similar frameworks?

• Historical reason

History of automata

• 1940s : to model neurons...
• 1960s : languages, computability
• 1970s : systems models
• 1980s : model checking

• Different scientific communities

• Finite automata: simple formalism, limited expressiveness,

efficient algorithms

• Many results in various domains

• Many extensions : pushdown automata, automata with data

structures (integers, ...), timed automata, Petri Nets

14/37

Properties to check on a transition system

Categories of properties

• Safety Something bad never happens

• Liveness Something good will happen eventually

• Accessibility A given state can be reached

• Invariance If a given property is true before a transition, it is still

true after this transition

• Fairness Transitions that are executable are executed eventually

15/37

Formal property languages

Need for a property language

We want to express formally these kinds of properties.

What properties for this system?

VAR

request : boolean;

state : {ready,busy};

INIT

state = ready

TRANS

if (state = ready & request)

then state’ = busy

else state’ = ready || state’ = busy

16/37

Propositional logic (syntax)

Definition (Syntax)
Given a set P of atomic propositions, the language of propositional

logic is defined by :

• If p ∈ P then p is a formula

• If A and B are formulas, then

• ¬A is a formula, A∧B is a formula

17/37

Propositional logic (semantics)

Definition (Semantics)
A model, or valuation, for a formula A is a function

V : P →{true, false} which associates each atomic proposition with a

truth value (V is a line in the truth table).

V |= p iff V (p)

V |= ¬A iff V ⊭ A

V |= A1 ∧A2 iff V |= A1 and V |= A2

Remark
Define Boolean connectives ∨ and ⇒ in terms of ¬ and ∧.

18/37

Propositional logic (axiomatics)

Definition (Axiomatics)
Axioms

• A1 ⇒ (A2 ⇒ A1) Ax1

• (A1 ⇒ (A2 ⇒ A3))⇒ ((A1 ⇒ A2)⇒ (A1 ⇒ A3)) Ax2

Inference rule

• A1 A1⇒A2
A2

(Modus Ponens)

19/37

Valid formulas and theorems

Valid formula
A formula A is valid (|= A) if it is true for every valuation :

|= A iff ∀V V |= A

Theorem
A formula A is a theorem (⊢ A) if it is an axiom or it is obtained by

applying inference rules to axioms..

Exercise
Prove that A ⇒ A is valid, and then prove that it is a theorem.

Definition (Correctness and completeness)

• A deduction system is correct if every theorem is valid.

• It is complete if every valid formula is a theorem.

20/37

Valid formulas and theorems

Valid formula
A formula A is valid (|= A) if it is true for every valuation :

|= A iff ∀V V |= A

Theorem
A formula A is a theorem (⊢ A) if it is an axiom or it is obtained by

applying inference rules to axioms..

Exercise
Prove that A ⇒ A is valid, and then prove that it is a theorem.

Definition (Correctness and completeness)

• A deduction system is correct if every theorem is valid.

• It is complete if every valid formula is a theorem.

20/37

Decision procedure

To know if a formula is valid (or satisfiable), there are different

methods.

• the simplest : truth table

• many algorithms have been developed recently with the aim of

efficiency

• method that will be useful for temporal logics : tableaux method

Goal : build a model of a formula, if there is one. It is important to

make sure the method is complete (if it does not produce a

model, then there does not exist any).

21/37

Expressiveness of propositional logic

Try to express in propositional logic:

• Function compute_position returns a correct result if

functions gps and measure_speed return correct results.

• At least two of these three functions return a correct result.

• Each level 1 function returns a correct result if all the level 2

functions (on which it depends) return a correct result.

• After an incorrect result of function gps, function

compute_position returns a result that stays incorrect for

the whole system execution.

22/37

First order logic

Definition
First order logic extends propositional logic with

• variables x1,x2, . . .

• quantifiers ∃,∀ on variables

• functions on variables (succ if we reason on integers)

• predicates which replace propositions, and which apply to terms

(variables or function applications) (⩽ for instance):

∀x .∀y .∃z. ⩽ (x ,z)⇒ ⩽ (succ(y),z)

First order logic is more expressive than propositional logic but it is

undecidable.

23/37

Temporal logics

Temporal logics extend propositional logic to express dynamic

behaviours instead of static properties.

• p will be true eventually.

• p will always be true.

• p is always followed by q.

• there exists an execution that will satisfy p.

• . . .

24/37

Linear Temporal Logic (LTL)

Definition (Syntax)
Given a set P of atomic propositions, the syntax of LTL is defined by :

• If p ∈ P then p is a formula

• If A and B are formulas, then

• ¬A is a formula, A∧B is a formula
• X A is a formula, A U B is a formula

• X A : A will be true in the next state

• A1 U A2 : A1 will remain true until A2 becomes true

Standard LTL connectives (to define in terms of the previous

operators)

• F A : A will be true at some instant in the future

• G A : A will always be true
25/37

Linear Temporal Logic (LTL)

Definition (Semantics)
A model is an infinite sequence σ ∈ Sω of states (s0,s1, . . .) with a

valuation function V : S → 2P .

σ, i |= p iff p ∈ V (σi)

σ, i |= ¬A iff σ, i ⊭ A

σ, i |= A1 ∧A2 iff σ, i |= A1 and σ, i |= A2

σ, i |= A1 U A2 iff ∃i ′ ⩾ i such that σ, i ′ |= A2 and

∀ i ′′ ∈ N if i ⩽ i ′′ < i ′ then σ, i ′′ |= A1

σ, i |= X A iff . . .

26/37

Linear Temporal Logic (LTL)

Definition (Semantics)
A model is an infinite sequence σ ∈ Sω of states (s0,s1, . . .) with a

valuation function V : S → 2P .

σ, i |= p iff p ∈ V (σi)

σ, i |= ¬A iff σ, i ⊭ A

σ, i |= A1 ∧A2 iff σ, i |= A1 and σ, i |= A2

σ, i |= A1 U A2 iff ∃i ′ ⩾ i such that σ, i ′ |= A2 and

∀ i ′′ ∈ N if i ⩽ i ′′ < i ′ then σ, i ′′ |= A1

σ, i |= X A iff . . .

26/37

Linear Temporal Logic (LTL)

Definition (Semantics)
A model is an infinite sequence σ ∈ Sω of states (s0,s1, . . .) with a

valuation function V : S → 2P .

σ, i |= p iff p ∈ V (σi)

σ, i |= ¬A iff σ, i ⊭ A

σ, i |= A1 ∧A2 iff σ, i |= A1 and σ, i |= A2

σ, i |= A1 U A2 iff ∃i ′ ⩾ i such that σ, i ′ |= A2 and

∀ i ′′ ∈ N if i ⩽ i ′′ < i ′ then σ, i ′′ |= A1

σ, i |= X A iff . . .

26/37

LTL standard connectives (solution)

F A
def
= (¬A) U A

G A
def
= ¬F ¬A

27/37

Expressiveness of LTL

Try to express in LTL

• p will be true at least once.

• Each time p is true, q will be true later on

• p is true at most once

• p is true exactly twice

• p will only be true after q

• When p is true, there is an execution on which q will be true, and

an execution in which r will be true

28/37

Computation-Tree Logic (CTL)

Definition (Syntax)
Given a set P of atomic propositions, CTL syntax is defined as follows:

• If p ∈ P then p is a formula

• If A and B are formulas, then

• ¬A is a formula, A∧B is a formula
• EX A is a formula, E[A U B] is a formula, A[A U B] is a formula

• EX A : there exists a successor state satisfying A

• E[A1 U A2] / A[A1 U A2] : there exists / all paths starting from the

current state (that) satisfy(ies) A1 U A2

29/37

Other standard CTL connectives

To define in terms of the previous operators :

• AX A : all the successors of the current state satisfy A

• AG A : A will always be true (in all the paths that start from the

current state)

• EG A, AF A, EF A

30/37

CTL

Definition (CTL model)
A CTL model is a Kripke structure (S, I,→,V), où

• S is a set of states

• I ⊆ S the set of initial states

• →⊆ S×S is the transition relation

• V : S → 2P is a function mapping each state to the set of atomic

propositions that are true in this state

{p}
s0 s1

{p, q}
s3s2

{p}

{p}

31/37

CTL

Definition (Semantics)

s |= p iff p ∈ V (s) where p ∈ P

s |= ¬A iff s ⊭ A

s |= A1 ∧A2 iff s |= A1 and s |= A2

s |= EX A iff ∃s′ ∈ S such that s → s′ and s′ |= A

s |= A[A1 U A2] iff ∀σ ∈ Paths(s) ∃i ∈ N such that σi |= A2

and ∀j ∈ N if 0 ⩽ j < i then σj |= A1

s |= E[A1 U A2] iff ∃σ ∈ Paths(s) ∃i ∈ N such that σi |= A2

and ∀j ∈ N if 0 ⩽ j < i then σj |= A1

32/37

CTL standard connectives (solution)

F A
def
= (¬A) U A

G A
def
= ¬F ¬A

AX A
def
= ¬EX ¬A

EF A
def
= E[¬A U A]

AF A
def
= A[¬A U A]

EG A
def
= ¬AF ¬A

AG A
def
= ¬EF ¬A

33/37

Satisfaction by a Kripke structure (CTL)

Given M = (S, I,→,V) a model and A a CTL formula,

M |= A iff ∀s ∈ I s |= A

34/37

Satisfaction by a Kripke structure (LTL)

Satisfaction of an LTL formula by a model
Given M = (S, I,→,V) a model and A an LTL formula,

M |= A iff ∀σ ∈ Paths(M), σ,0 |= A

35/37

Theoretical results about LTL et CTL

Theorem
LTL and CTL are decidable. They both have correct and complete

axiomatic systems.

36/37

Expressiveness of LTL and CTL

Expressive power of two logics

Let L1 and L2 be two logics having the same semantic models.

L1 ⩽ L2 (L2 is more expressive than L1) if

for any A1 ∈ L1, there is A2 ∈ L2 s.t. the models satisfying A1 are the

same as the models satisfying A2.

Expressive power of LTL and CTL

Do we have LTL ⩽ CTL or CTL ⩽ LTL ?

37/37

Expressiveness of LTL and CTL

Expressive power of two logics

Let L1 and L2 be two logics having the same semantic models.

L1 ⩽ L2 (L2 is more expressive than L1) if

for any A1 ∈ L1, there is A2 ∈ L2 s.t. the models satisfying A1 are the

same as the models satisfying A2.

Expressive power of LTL and CTL

Do we have LTL ⩽ CTL or CTL ⩽ LTL ?

37/37

	Introduction
	Formal semantics of systems
	Formal property languages
	Propositional logic
	Linear time
	Branching-Time

