M2 ISTR - Vérification et Validation

Model Checking

Julien Brunel, ONERA Julien.Brunel@onera.fr [Introduction](#page-2-0)

[Formal semantics of systems](#page-11-0)

[Formal property languages](#page-17-0)

[Propositional logic](#page-19-0)

[Linear time](#page-28-0)

[Branching-Time](#page-34-0)

[Introduction](#page-2-0)

- Techniques based on mathematical methods to reason in a rigourous way
- Used in the design and validation of critical systems (railways, aeronautics, space, automotive)
- Costly (in terms of time and expertise) but errors and bugs are even more!
- Allow to have guarantees by proof

Model checking

- 1. Building of a formal model of the system
- 2. Formal expression of the properties to check (derived from the specification or from requirements)
- 3. Answer the question : *Does the model of the system satisfy the properties?*

- Step 1 can be done by hand, or automatically. The system can be a simple program, an hardware architecture, or the abstraction of a more complex system, made of IT components and non-IT components (hydraulics for instance).
- Step 2 must be done by hand, and may need some expertise on the property language.
- Step 3 is in principle entirely automatic.

Advantages

- can be used in early phases of development cycle
- automatic approach
- exhaustive exploration of the states of the system
- nice expressiveness (lots of properties can be expressed)
- efficiency according to the data structures

Limits

- needs formalisation
- expression of properties is non trivial
- finite number of states
- state explosion problem
- efficient data structures : Binary Decision Diagram (BDD)
- abstract the model to decrease the number of states
- partial order reduction: do not consider several times executions that are equivalent for the satisfaction of the desired property
- induction : allows to represent in a finite way infinite structures
- \bullet

1977 Pnueli proposes to use temporal logic

- 1981 Model checking of CTL par Clarke et al., Sifakis et al.
- 1980-1990 Many theoretical results
- 1990-2000 Huge performance improvements Extensions : probabilities, real-time, infinite structures
- 2000-... MC adopted by main chip marker corporations (*e.g.* Intel) Starting of software model checking (Microsoft) ACM Paris Kanellakis Award 1998 et 2005
- 2007 Turing Award to Clarke, Sifakis et Emerson

2010-... new SAT-based algorithms

In practice

- Check properties of electronic circuits (Intel, Motorola, IBM, etc.)
- Check the absence of bugs, or find bugs in software (*software model checking*)
	- on Scade programs
	- on C code (BLAST from Berkeley, SLAM from Microsoft)
	- on Java code (JavaPathFinder)
	- on ByteCode, binary, ...
- Analyse the dependability of a system (AltaRica du LaBri/Dassault)
- Check the correctness of distributed systems (TLA+ used for instance by AWS)

Non temporal properties

Property about the value of variables or the data structure

- *The value of the integer variable* x *is greater than* y.
- *The array is sorted.*
- \Rightarrow out of the scope of model checking

Temporal Properties

Temporal aspects can have various forms

- *If a process requests to be executed, the OS will execute it eventually.*
- *It is always possible to go back to the initial state.*
- *Each time a failure is detected, an alarm is launched.*
- *Each time an alarm is launched, a failure has been detected earlier.* 10/37

[Formal semantics of systems](#page-11-0)

Transition system

Definition (Transition system (TS))

- a set *S* of states
- a set *^I* ⊆ *^S* of initial states
- a set *L* of labels
- a transition relation →⊆ *^S* ×*L*×*^S*

Notation

$$
s_1 \stackrel{a}{\rightarrow} s_2 \stackrel{\text{def}}{=} (s_1, a, s_2) \in \rightarrow
$$

\n
$$
s_1 \rightarrow s_2 \stackrel{\text{def}}{=} \exists a \in L . s_1 \stackrel{a}{\rightarrow} s_2
$$

Transition system (symbolic definition)

- States can be defined by variables
- Transitions can be defined by variable updates

A (very) simple resource allocator

VAR

```
request : boolean;
state : {ready, busy};
INIT
state = ready
TRANS
if (state = ready & request)
then state' = busy
else state' = ready || state' = busy
```
Terminology

We find different terms for very close concepts:

- Kripke models/structures in logic (model theory)
- State machine in software engineering
- Automata
	- in language theory,
	- or to model control structures at a higher level than TS (e.g., with variables)

Main differences between variants

- Finite of infinite number of states
- Determinism
- Label on states and/or transitions

Why so many similar frameworks?

• Historical reason

History of automata

- 1940s : to model neurons...
- 1960s : languages, computability
- 1970s : systems models
- 1980s : model checking
- Different scientific communities
- Finite automata: simple formalism, limited expressiveness, efficient algorithms
- Many results in various domains
- Many extensions : pushdown automata, automata with data structures (integers, ...), timed automata, Petri Nets

Categories of properties

- Safety *Something bad never happens*
- Liveness *Something good will happen eventually*
- Accessibility *A given state can be reached*
- Invariance *If a given property is true before a transition, it is still true after this transition*
- Fairness *Transitions that are executable are executed eventually*

[Formal property languages](#page-17-0)

We want to express formally these kinds of properties.

What properties for this system?

```
VAR
```

```
request : boolean;
  state : {ready, busy};
INIT
  state = ready
TRANS
  if (state = ready & request)
 then state' = busy
 else state' = ready || state' = busy
```
Definition (Syntax)

Given a set *P* of atomic propositions, the language of propositional logic is defined by :

- If $p \in P$ then **p** is a formula
- If *A* and *B* are formulas, then
	- ¬*^A* is a formula, *^A*∧*^B* is a formula

A model, or valuation, for a formula *A* is a function

V : *P* → {*true*, *false*} which associates each atomic proposition with a truth value (*V* is a line in the truth table).

$$
V \models p \quad \text{iff} \quad V(p) \nV \models \neg A \quad \text{iff} \quad V \not\models A \nV \models A_1 \land A_2 \quad \text{iff} \quad V \models A_1 \text{ and } V \models A_2
$$

Remark *Define Boolean connectives* ∨ *and* ⇒ *in terms of* ¬ *and* ∧*.*

Definition (Axiomatics) Axioms

•
$$
A_1 \Rightarrow (A_2 \Rightarrow A_1)
$$
 A x_1

•
$$
(A_1 \Rightarrow (A_2 \Rightarrow A_3)) \Rightarrow ((A_1 \Rightarrow A_2) \Rightarrow (A_1 \Rightarrow A_3))
$$
 Ax2

Inference rule

•
$$
\frac{A_1 \quad A_1 \Rightarrow A_2}{A_2}
$$
 (Modus Ponens)

Valid formula

A formula A is valid (\models A) if it is true for every valuation :

 $\models A$ iff $\forall V \quad V \models A$

Theorem

A formula A is a theorem $(· A)$ if it is an axiom or it is obtained by applying inference rules to axioms..

Exercise

Prove that $A \Rightarrow A$ is valid, and then prove that it is a theorem.

Valid formula

A formula A is valid $(= A)$ if it is true for every valuation :

 $\models A$ iff $\forall V \quad V \models A$

Theorem

A formula A is a theorem $(· A)$ if it is an axiom or it is obtained by applying inference rules to axioms..

Exercise

Prove that $A \Rightarrow A$ is valid, and then prove that it is a theorem.

Definition (Correctness and completeness)

- A deduction system is correct if every theorem is valid.
- It is complete if every valid formula is a theorem.

To know if a formula is valid (or satisfiable), there are different methods.

- the simplest : truth table
- many algorithms have been developed recently with the aim of efficiency
- method that will be useful for temporal logics : tableaux method Goal : build a model of a formula, if there is one. It is important to make sure the method is complete (if it does not produce a model, then there does not exist any).

Try to express in propositional logic:

- *Function* compute_position *returns a correct result if functions* gps *and* measure_speed *return correct results.*
- *At least two of these three functions return a correct result.*
- *Each level 1 function returns a correct result if all the level 2 functions (on which it depends) return a correct result.*
- *After an incorrect result of function* gps*, function* compute_position *returns a result that stays incorrect for the whole system execution.*

Definition

First order logic extends propositional logic with

- variables x_1, x_2, \ldots
- quantifiers ∃,∀ on variables
- functions on variables (succ if we reason on integers)
- predicates which replace propositions, and which apply to terms (variables or function applications) (\leq for instance):

$$
\forall x. \forall y. \exists z. \leq (x,z) \Rightarrow \leq (succ(y),z)
$$

First order logic is more expressive than propositional logic but it is undecidable.

Temporal logics extend propositional logic to express dynamic behaviours instead of static properties.

- *p* will be true eventually.
- *p* will always be true.
- *p* is always followed by *q*.
- there exists an execution that will satisfy *p*.

 \bullet

Definition (Syntax)

Given a set *P* of atomic propositions, the syntax of LTL is defined by :

- If $p \in P$ then **p** is a formula
- If *A* and *B* are formulas, then
	- ¬*^A* is a formula, *^A*∧*^B* is a formula
	- X *A* is a formula, *A* U *B* is a formula

- *X A* : *A* will be true in the next state
- A_1 U A_2 : A_1 will remain true until A_2 becomes true

Standard LTL connectives (to define in terms of the previous operators)

- F *A* : *A* will be true at some instant in the future
- $G A : A$ will always be true

A model is an infinite sequence $\sigma \in S^{\omega}$ of states (s_0, s_1, \ldots) with a valuation function $V: S \rightarrow 2^P$.

 $\sigma, i \models p$ iff $p \in V(\sigma_i)$ $\sigma, i \models \neg A$ iff $\sigma, i \not\models A$ $\sigma, i \models A_1 \land A_2$ iff $\sigma, i \models A_1$ and $\sigma, i \models A_2$

A model is an infinite sequence $\sigma \in S^{\omega}$ of states (s_0, s_1, \ldots) with a valuation function $V: S \rightarrow 2^P$.

$$
\begin{array}{llll}\n\sigma, i \models \rho & \text{iff} & \rho \in V(\sigma_i) \\
\sigma, i \models \neg A & \text{iff} & \sigma, i \nvDash A \\
\sigma, i \models A_1 \land A_2 & \text{iff} & \sigma, i \models A_1 \text{ and } \sigma, i \models A_2 \\
\sigma, i \models A_1 \cup A_2 & \text{iff} & \exists i' \geq i \text{ such that} & \sigma, i' \models A_2 \text{ and} \\
& \forall i'' \in \mathbb{N} \text{ if } i \leq i'' < i' \text{ then } \sigma, i'' \models A_1\n\end{array}
$$

A model is an infinite sequence $\sigma \in S^{\omega}$ of states (s_0, s_1, \ldots) with a valuation function $V: S \rightarrow 2^P$.

$$
\begin{array}{llll}\n\sigma, i \models \rho & \text{iff} & \rho \in V(\sigma_i) \\
\sigma, i \models \neg A & \text{iff} & \sigma, i \nvDash A \\
\sigma, i \models A_1 \land A_2 & \text{iff} & \sigma, i \models A_1 \text{ and } \sigma, i \models A_2 \\
\sigma, i \models A_1 \cup A_2 & \text{iff} & \exists i' \geq i \text{ such that} & \sigma, i' \models A_2 \text{ and} \\
\forall i'' \in \mathbb{N} \text{ if } i \leq i'' < i' \text{ then } \sigma, i'' \models A_1 \\
\sigma, i \models X \land & \text{iff} & \dots\n\end{array}
$$

$$
\begin{array}{rcl}\nF A & \stackrel{\text{def}}{=} & (\neg A) \cup A \\
G A & \stackrel{\text{def}}{=} & \neg F \neg A\n\end{array}
$$

Try to express in LTL

- *p will be true at least once.*
- *Each time p is true, q will be true later on*
- *p is true at most once*
- *p is true exactly twice*
- *p will only be true after q*
- *When p is true, there is an execution on which q will be true, and an execution in which r will be true*

Definition (Syntax)

Given a set *P*^{of} atomic propositions, CTL syntax is defined as follows:

- If *^p* ∈ *^P* then *^p* is a formula
- If *A* and *B* are formulas, then
	- ¬*^A* is a formula, *^A*∧*^B* is a formula
	- **E**X *A* is a formula, **E**[*A* U *B*] is a formula, **A**[*A* U *B*] is a formula
- **E**X *A* : there exists a successor state satisfying *A*
- $E[A_1 \cup A_2] / A[A_1 \cup A_2]$: there exists / all paths starting from the current state (that) satisfy(ies) *A*¹ U *A*²

To define in terms of the previous operators :

- **A**X *A* : all the successors of the current state satisfy *A*
- **A**G *A* : *A* will always be true (in all the paths that start from the current state)
- **E**G *A*, **A**F *A*, **E**F *A*

Definition (CTL model)

A CTL model is a Kripke structure (*S*,*I*,→,*V*), où

- *S* is a set of states
- *^I* ⊆ *^S* the set of initial states
- →⊆ *^S* ×*^S* is the transition relation
- $V: S \rightarrow 2^P$ is a function mapping each state to the set of atomic propositions that are true in this state

- $s \models p$ iff $p \in V(s)$ where $p \in P$
- $s \models \neg A$ iff $s \not\models A$
- $s \models A_1 \land A_2$ iff $s \models A_1$ and $s \models A_2$
- $s \models EX$ *A* $S' \in S$ such that $s \rightarrow s'$ and $s' \models A$
- $s \models A[A_1 \cup A_2]$ iff $\forall \sigma \in \mathit{Paths}(s)$ $\exists i \in \mathbb{N}$ such that $\sigma_i \models A_2$ and $\forall j \in \mathbb{N}$ if $0 \leq j < i$ then $\sigma_j \models A_1$ $s \models \mathsf{E}[A_1 \cup A_2]$ iff $\exists \sigma \in \mathit{Paths}(s)$ $\exists i \in \mathbb{N}$ such that $\sigma_i \models A_2$ and $\forall j \in \mathbb{N}$ if $0 \leq j < i$ then $\sigma_j \models A_1$

$$
\begin{array}{ccc}\nFA & \stackrel{\text{def}}{=} & (\neg A) \cup A \\
GA & \stackrel{\text{def}}{=} & \neg F \neg A\n\end{array}
$$

- $AX A \stackrel{\text{def}}{=} \neg EX \neg A$ **E**F $A \stackrel{\text{def}}{=} \mathbf{E}[\neg A \cup A]$ $AF A \stackrel{\text{def}}{=} A[\neg A \cup A]$ **E**G *A* $\stackrel{\text{def}}{=} \neg$ **A**F \neg *A*
- $AG A \stackrel{\text{def}}{=} \neg EF \neg A$

Given $M = (S, I, \rightarrow, V)$ a model and A a CTL formula,

M \models *A* iff \forall *s* ∈ *I s* \models *A*

Satisfaction of an LTL formula by a model Given $M = (S, I, \rightarrow, V)$ a model and *A* an LTL formula,

$$
M \models A \quad \text{iff} \quad \forall \sigma \in \text{Paths}(M), \quad \sigma, 0 \models A
$$

Theorem

LTL and CTL are decidable. They both have correct and complete axiomatic systems.

Expressive power of two logics

Let L_1 and L_2 be two logics having the same semantic models.

 $L_1 \leq L_2$ (*L*₂ is more expressive than L_1) if for any $A_1 \in L_1$, there is $A_2 \in L_2$ s.t. the models satisfying A_1 are the same as the models satisfying A_2 .

Expressive power of two logics

Let L_1 and L_2 be two logics having the same semantic models.

 $L_1 \leq L_2$ (*L*₂ is more expressive than L_1) if for any $A_1 \in L_1$, there is $A_2 \in L_2$ s.t. the models satisfying A_1 are the same as the models satisfying A_2 .

Expressive power of LTL and CTL

Do we have LTL \leq CTL or CTL \leq LTL ?